Answer:-
The given points are A(–4, –7), B(–1, 2), C(8, 5) and D(5, –4).
Distance between two points = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)
According to the distance formula,
\[AB =\sqrt{([-1-(-4)]^2 +[2-(-7)]^2}\]
\[∴ AB = \sqrt{(9+81) }\]
\[∴ AB = \sqrt{90 ...(1)}\]
\[BC =\sqrt{([8-(-1)]^2+(5-2)^2)}\]
\[∴ BC =\sqrt{(9^2+3^2)}\]
\[∴ BC = \sqrt{(81+9)}\]
\[∴ BC = \sqrt{90 ...(2)}\]
\[CD = \sqrt{((5-8)^2 +(-4-5)^2)}\]
\[∴ CD =\sqrt{((-3)^2 +(-9)^2)}\]
\[ ∴ CD =\sqrt{(9+81)}\]
\[∴ CD = \sqrt{90 ....... (3)}\]
\[ AD = \sqrt{([5-(-4)]^2+ [-4-(-7)]^2)}\]
\[∴ AD =\sqrt{(9^2+3^2)}\]
\[∴ AD =\sqrt{(81+9)}\]
\[∴ AD = \sqrt{90 ....... (4)}\]
From (1), (2), (3), and (4)}\]
AB = BC = CD = AD
Thus, all sides are equal.
In a quadrilateral, if all the sides are equal, then it is a rhombus.
∴ square ABCD is a rhombus.
∴ Points A, B, C and D are the vertices of rhombus ABCD.