Hushar Mulga
@Rohit
Spread the love

Prove the following. tan4q + tan2q = sec4q - sec2q

Chapter 6 – Trigonometry – Text Book Solution

Problem set 6| Q 5.5| Page 138

Prove the following.
(5) tan4q + tan2q = sec4q – sec2q

Solution

tan4θ + tan2θ

= tan2θ( tan2θ + 1)

= (sec2θ - 1)(sec2θ) [1 + tan2θ = sec2θ]

= sec4θ - sec2θ

= RHS

Solution

cot^2θ – tan^2θ

= (cosec^2θ – 1) – (sec^2θ – 1) ……(1)

[∵ 1 + tan^2θ = sec^2θ & 1 + cot^2θ = cosec^2θ]

= cosec^2θ – sec^2θ ……..(2)

Substituting (2) in (1), we get:

cot^2θ – tan^2θ = cosec^2θ – sec^2θ

Chapter 6 – Trigonometry – Text Book Solution

Problem Set 6 |Q 5.5| P 138

Click Here to see All the Textbook solution of Geometric Construction