Prove the following. sec^6 x - tan^6 x = 1 + 3 sec^2 x * tan^2 x.
Chapter 6 – Trigonometry – Text Book Solution
Problem set 6| Q 5.7| Page 138
Prove the following. sec^6 x – tan^6 x = 1 + 3 sec^2 x * tan^2 x.
We have,
\[\sec^2 x - \tan^2 x = 1\]
Cubing on both sides, we get
\[\left( \sec^2 x - \tan^2 x \right)^3 = 1^3 \]
\[ \Rightarrow \left( \sec^2 x \right)^3 - \left( \tan^2 x \right)^3 - 3 \times \sec^2 x \times \tan^2 x \times \left( \sec^2 x - \tan^2 x \right) = 1 \left[ \left( a - b \right)^3 = a^3 - b^3 - 3ab\left( a - b \right) \right]\]
\[ \Rightarrow \sec^6 x - \tan^6 x - 3 \sec^2 x \tan^2 x = 1\]
\[ \Rightarrow \sec^6 x - \tan^6 x = 1 + 3 \sec^2 x \tan^2 x\]
Solution
Chapter 6 – Trigonometry – Text Book Solution
Problem Set 6 |Q 5.7| P 138
Click Here to see All the Textbook solution of Geometric Construction