Solution
We can start by using the identity:
sin²θ + cos²θ = 1
We can square both sides to get:
(sin²θ + cos²θ)² = 1
Expanding the left-hand side gives:
sin⁴θ + 2sin²θ cos²θ + cos⁴θ = 1
Now we can use the identity:
cos²θ = 1 – sin²θ
To substitute for cos²θ in the equation above:
sin⁴θ + 2sin²θ (1 – sin²θ) + (1 – sin²θ)² = 1
Expanding and simplifying gives:
sin⁴θ – 2sin²θ + 1 = 2sin²θ cos²θ
Using the identity:
cos2θ = 1 – 2sin²θ
To substitute for cos²θ in the equation above:
sin⁴θ – 2sin²θ + 1 = 2sin²θ (1 – cos²θ)
sin⁴θ – 2sin²θ + 1 = 2sin²θ sin²(2θ)
sin⁴θ – 2sin²θ + 1 = (sin²θ)(2 – 2cos²(2θ))
sin⁴θ – cos⁴θ = (sin²θ)(1 – 2cos²(2θ))
Now, we can use the identity:
cos2θ = 1 – 2sin²θ
To substitute for cos²(2θ) in the equation above:
sin⁴θ – cos⁴θ = (sin²θ)(1 – 2(1 – 2sin²θ))
sin⁴θ – cos⁴θ = 1 – 2sin²θ
Therefore, we have shown that sin4θ – cos4θ = 1 – 2cos2θ.