Hushar Mulga
@Rohit
Spread the love

Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`

Chapter 6 – Trigonometry – Text Book Solution

Problem set 6| Q 5.10| Page 139

Prove that `(sinθ – cosθ + 1)/(sinθ + cosθ – 1) = 1/(secθ – tanθ)`

Solution $$\frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}$$ $$=\frac{(\sin\theta-\cos\theta+1)(\sin\theta+\cos\theta+1)}{(\sin\theta+\cos\theta-1)(\sin\theta+\cos\theta+1)}$$ $$=\frac{(\sin\theta+1-\cos\theta)(\sin\theta+1+\cos\theta)}{(\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta-1)}$$ $$=\frac{(\sin\theta+1)^2-\cos^2\theta}{(\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta-1)}$$ Since $$\sin^2\theta+\cos^2\theta=1$$, we get $$\frac{(1-\cos^2\theta+2\sin\theta)}{(2\sin\theta\cos\theta)}$$ $$=\frac{(2-2\cos^2\theta+2\sin\theta)}{(2\sin\theta\cos\theta)}$$ $$=\frac{(1-\cos^2\theta+\sin\theta)}{(sin\theta\cos\theta)}$$ $$=\frac{(\sin\theta+\sin^2\theta)}{(\sin\theta\cos\theta)}$$ $$=\frac{(\sin\theta+1)}{\cos\theta}$$ $$=\frac{1}{\cos\theta}+\frac{\sin\theta}{\cos\theta}$$ $$=\sec\theta+\tan\theta$$ $$=(\sec\theta+\tan\theta)\frac{\sec\theta-\tan\theta}{\sec\theta-\tan\theta}$$ $$=\frac{\sec^2\theta-\tan^2\theta}{\sec\theta-\tan\theta}$$ We know that$$\sec^2\theta-\tan^2\theta=1$$ and so we get $$=\frac{1}{\sec\theta-\tan\theta}$$ Hence, proved.

Solution

Consider the L.H.S.

(sinθ - cosθ + 1)/(sinθ + cosθ - 1)

= ((sinθ - cosθ + 1)/(sinθ + cosθ - 1)) * ((sinθ + cosθ + 1)/(sinθ + cosθ + 1))

= ((sinθ + 1 - cosθ)/(sinθ + cosθ - 1)) * ((sinθ + 1 + cosθ)/(sinθ + cosθ + 1))

= ((sinθ + 1)^2 - cos^2θ)/((sinθ + cosθ)^2 - 1^2)

= (sin^2θ + 1 + 2sinθ - cos^2θ)/(sin^2θ + cos^2θ + 2sinθcosθ - 1)

since sin^2θ + cos^2θ = 1

= (1 - cos^2θ + 1 + 2sinθ - cos^2θ)/(1 + 2sinθcosθ - 1)

= (2 - 2cos^2θ + 2sinθ)/(2sinθcosθ)

= (1 - cos^2θ + sinθ)/(sinθcosθ)

= (sin^2θ + sinθ)/(sinθcosθ)

= (sinθ + 1)/cosθ

= 1/cosθ + sinθ/cosθ

= secθ + tanθ

= (secθ + tanθ) * (secθ - tanθ)/(secθ - tanθ)

= (sec^2θ - tan^2θ)/(secθ - tanθ)

We know that sec^2θ – tan^2θ = 1

= 1/(secθ - tanθ)

Hence, it is proved.

Chapter 6 – Trigonometry – Text Book Solution

Problem Set 6 |Q 5.10| P 139

Click Here to see All the Textbook solution of Geometric Construction