Prove that: prove that 1/(secθ-tanθ)=secθ+tanθ
Chapter 6 – Trigonometry – Text Book Solution
Practice Set 6.1| Q 6.6 | Page 132
Prove that: prove that 1/(secθ-tanθ)=secθ+tanθ
Solution
We can start by using the definitions of secant and tangent:
1/(secθ – tanθ)
= 1/(1/cosθ – sinθ/cosθ)
= cosθ/(1 – sinθ)
Now, we can use the identity:
1 – sin²θ = cos²θ
To rewrite the denominator:
1 – sinθ = cos²θ – sinθ*cosθ
= cosθ(cosθ – sinθ)
So, we have:
cosθ/(cosθ(cosθ – sinθ))
= 1/(cosθ – sinθ)
= (cosθ + sinθ)/(cosθ – sinθ) * (cosθ + sinθ)/(cosθ + sinθ)
= (cos²θ + 2sinθ cosθ + sin²θ)/(cos²θ – sin²θ)
= (1 + 2tanθ secθ + tan²θ)/(sec²θ – tan²θ)
= (secθ + tanθ)²/secθc²θ
Therefore, we have shown that 1/(secθ – tanθ) = secθ + tanθ.
.
Chapter 6 – Trigonometry – Text Book Solution
Practice set 6.1 |Q 6.5| P 132
Click Here to see All the Textbook solution of Geometric Construction