Hushar Mulga
@Rohit
Spread the love

Prove that: prove that 1/(secθ-tanθ)=secθ+tanθ

Chapter 6 – Trigonometry – Text Book Solution

Practice Set 6.1| Q 6.6 | Page 132

Prove that: prove that 1/(secθ-tanθ)=secθ+tanθ

Solution We can start by using the definitions of secant and tangent: $$\frac{1}{\sec\theta - \tan\theta}$$ $$= \frac{1}{\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}}$$ $$= \frac{\cos\theta}{1 - \sin\theta}$$ Now, we can use the identity: $$1 - \sin^2\theta = \cos^2\theta$$ To rewrite the denominator: $$1 - \sin\theta = \cos^2\theta - \sin\theta\cos\theta$$ $$= \cos\theta(\cos\theta - \sin\theta)$$ So, we have: $$\frac{\cos\theta}{\cos\theta(\cos\theta - \sin\theta)}$$ $$= \frac{1}{\cos\theta - \sin\theta}$$ $$= \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} \cdot \frac{\cos\theta + \sin\theta}{\cos\theta + \sin\theta}$$ $$= \frac{\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta}{\cos^2\theta - \sin^2\theta}$$ $$= \frac{1 + 2\tan\theta\sec\theta + \tan^2\theta}{\sec^2\theta - \tan^2\theta}$$ $$= \frac{\sec\theta + \tan\theta)^2}{\sec^2\theta}$$ Therefore, we have shown that $$\frac{1}{\sec\theta - \tan\theta} = \sec\theta + \tan\theta$$.

Solution

We can start by using the definitions of secant and tangent:

1/(secθ – tanθ)

= 1/(1/cosθ – sinθ/cosθ)

= cosθ/(1 – sinθ)

Now, we can use the identity:

1 – sin²θ = cos²θ

To rewrite the denominator:

1 – sinθ = cos²θ – sinθ*cosθ

= cosθ(cosθ – sinθ)

So, we have:

cosθ/(cosθ(cosθ – sinθ))

= 1/(cosθ – sinθ)

= (cosθ + sinθ)/(cosθ – sinθ) * (cosθ + sinθ)/(cosθ + sinθ)

= (cos²θ + 2sinθ cosθ + sin²θ)/(cos²θ – sin²θ)

= (1 + 2tanθ secθ + tan²θ)/(sec²θ – tan²θ)

= (secθ + tanθ)²/secθc²θ

Therefore, we have shown that 1/(secθ – tanθ) = secθ + tanθ.

.

Chapter 6 – Trigonometry – Text Book Solution

Practice set 6.1 |Q 6.5| P 132

Click Here to see All the Textbook solution of Geometric Construction