Prove that: \[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]
Chapter 6 – Trigonometry – Text Book Solution
Practice Set 6.1| Q 6.3 | Page 132
Prove that:
\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]
\[sec\theta = \frac{1}{\cos\theta}\]
\[tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[sin^2\theta + \cos^2\theta = 1\]
\[frac{1}{\cos^2\theta} = \tan^2\theta + 1\]
Starting with the left-hand side:
\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}}\]
\[= \sqrt{\frac{(1 - \sin\theta)^2}{(1 - \sin^2\theta)}}\]
\[= \sqrt{\frac{(1 - \sin\theta)^2}{\cos^2\theta}}\]
\[= \frac{1 - \sin\theta}{\cos\theta}\]
Now we can substitute the identity for
\[\cos\theta:\]
\[= \frac{1 - \sin\theta}{\frac{1}{\sec\theta}}\]
\[= \sec\theta(1 - \sin\theta)\]
\[= \sec\theta - \sec\theta\sin\theta\]
\[= \sec\theta - \frac{\sin\theta}{\cos\theta}\]
\[= \sec\theta - \tan\theta\]
Therefore, we have shown that
\[ \sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta.\]
Solution
Chapter 6 – Trigonometry – Text Book Solution
Practice set 6.1 |Q 6.3 | P 131
Click Here to see All the Textbook solution of Geometric Construction