Hushar Mulga
@Rohit
Spread the love

Practice Set 2.1 | Q 9 | Page 39

In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ2 = 4PM2 – 3PR2

In the figure 2.22, M is the midpoint of QR. Ð PRQ = 90°.
Solution

In ∆PRM,

PR2 + RM2 = PM2
⇒ RM2 = PM2 - PR2 ....(1)

In ∆PRQ,

PR2 + RQ2 = PQ2
⇒ PQ2 = PR2 + (RM + MQ)2
⇒ PQ2 = PR2 + (RM + RM)2
⇒ PQ2 = PR2 + (2RM)2
⇒ PQ2 = PR2 + 4RM2
⇒ PQ2 = PR2 + 4(PM2 - PR2) .....(from 1)
⇒ PQ2 = PR2 + 4PM2 - 4PR2
⇒ PQ2 = 4PM2 - 3PR2

Hence, PQ= 4PM– 3PR2.

Explanation:- 

Given that PRM is a triangle. Using the Pythagorean theorem in ∆PRM, we can say that:

PR<sup>2</sup> + RM<sup>2</sup> = PM<sup>2</sup>

Simplifying the equation, we get:

RM<sup>2</sup> = PM<sup>2</sup> – PR<sup>2</sup> ….(1)

Now, consider triangle ∆PRQ. We can apply the Pythagorean theorem in this triangle as well, which gives us:

PR<sup>2</sup> + RQ<sup>2</sup> = PQ<sup>2</sup>

Substituting the value of RQ as (RM + MQ) in the above equation, we get:

PQ<sup>2</sup> = PR<sup>2</sup> + (RM + MQ)<sup>2</sup>

Simplifying further, we get:

PQ<sup>2</sup> = PR<sup>2</sup> + (RM + RM)<sup>2</sup>

PQ<sup>2</sup> = PR<sup>2</sup> + 4RM<sup>2</sup> ……..(2)

Substituting the value of RM<sup>2</sup> from equation (1) in equation (2), we get:

PQ<sup>2</sup> = PR<sup>2</sup> + 4(PM<sup>2</sup> – PR<sup>2</sup>)

Simplifying further, we get:

PQ<sup>2</sup> = PR<sup>2</sup> + 4PM<sup>2</sup> – 4PR<sup>2</sup>

PQ<sup>2</sup> = 4PM<sup>2</sup> – 3PR<sup>2</sup>

Hence, PQ<sup>2</sup> = 4PM<sup>2</sup> – 3PR<sup>2</sup>.

Chapter 2 – Pythagoras Theorem- Text Book Solution

Practice Set 2.1 | Q  9 | Page 39