Hushar Mulga
@Rohit
Spread the love

Practice Set 2.2 | Q 1 | Page 43
In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

Solution

In ∆PQR, point S is the midpoint of side QR.

\[QS = SR = \frac{1}{2}QR\]

\[{PQ}^2 + {PR}^2 = 2 {PS}^2 + 2 {QS}^2\] .......…[Apollonius theorem]

\[ \Rightarrow {11}^2 + {17}^2 = 2 \left( 13 \right)^2 + 2 {QS}^2 \]

\[ \Rightarrow 121 + 289 = 2\left( 169 \right) + 2 {QS}^2 \]

\[ \Rightarrow 410 = 338 + 2 {QS}^2 \]

\[ \Rightarrow 2 {QS}^2 = 410 - 338\]

\[ \Rightarrow 2 {QS}^2 = 72\]

\[ \Rightarrow {QS}^2 = 36\]

\[ \Rightarrow QS = 6\]

\[ \therefore QR = 2 \times QS\]

\[ = 2 \times 6\]

\[ = 12\]

Hence, QR = 12.

Explanation:- 

We are given a triangle ∆PQR, where point S is the midpoint of side QR. Thus, we can say that:

QS = SR = 1/2 QR

Using the Apollonius theorem, we can write:

PQ^2 + PR^2 = 2PS^2 + 2QS^2

Substituting the given values, we get:

11^2 + 17^2 = 2(13^2) + 2(QS^2)

Simplifying the above equation, we get:

410 = 338 + 2(QS^2)

2(QS^2) = 410 – 338

2(QS^2) = 72

QS^2 = 36

Taking the square root on both sides, we get:

QS = 6

Since QS = SR and QR = 2QS, we can say that:

QR = 2 x QS = 2 x 6 = 12

Therefore, the length of QR is 12.

Chapter 2 – Pythagoras Theorem- Text Book Solution

Practice Set 2.2 | Q  1 | Page 43