Hushar Mulga
@Rohit
Spread the love

Show that the points A(1, 2), B(1, 6), C(1 + 2 3 , 4) are vertices of an equilateral triangle.

The given points are A(1, 2), B(1, 6), C(1 + 2√3, 4).

\[Distance between = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}\]

By distance formula,

\[AB = \sqrt{((1 - 1)^2 + (6 - 2)^2)}\]

\[∴ AB = \sqrt{((0)^2 + (4)^2)}\]

\[∴ AB = \sqrt{(0 + 16)}\]

\[∴ AB = \sqrt{(16)}\]

∴ AB = 4        ...(1)

\[BC = \sqrt{((1 + 2sqrt3 - 1)^2 + (4 - 6)^2)}\]

\[∴  BC = \sqrt{((2\sqrt3)^2 + (-2)^2)}\]

\[∴  BC = \sqrt{(12 + 4)}\]

\[∴  BC = \sqrt{(16)}\]

∴  BC = 4        ...(2)

\[AC = \sqrt{((1 + 2\sqrt3 - 1)^2 + (4 - 2)^2)}\]

\[∴  AC = \sqrt{((2sqrt3)^2 + (2)^2)}\]

\[∴  AC = \sqrt{(12 + 4)}\]

\[∴  AC = \sqrt{(16) }\]

∴  AC = 4        ...(3)

From (1), (2) and (3)

∴  AB = BC = AC = 4

Since, all the sides of equilateral triangle are congruent.

∴ ΔABC is an equilateral triangle.

The points A , B and C are the vertices of an equilateral triangle.

Chapter 5. Co-ordinate Geometry – Practice Set 5.1 (Page 107)