Answer:-
\[PQ = \sqrt{\left( - 2 - 2 \right)^2 + \left( 2 - 2 \right)^2}\]
\[ = \sqrt{\left( - 4 \right)^2 + 0}\]
\[ = \sqrt{\left( - 4 \right)^2 + 0}\]
\[ = \sqrt{16} = 4\]
\[QR = \sqrt{\left( 2 - 2 \right)^2 + \left( 2 - 7 \right)^2}\]
\[ = \sqrt{0 + \left( - 5 \right)^2}\]
\[ = \sqrt{25}\]
\[ = 5\]
\[PR = \sqrt{\left( - 2 - 2 \right)^2 + \left( 2 - 7 \right)^2}\]
\[ = \sqrt{\left( - 4 \right)^2 + \left( - 5 \right)^2}\]
\[ = \sqrt{16 + 25}\]
\[ = \sqrt{41}\]
\[{PQ}^2 + {QR}^2 = {PR}^2 \]
⇒42 + 52 = 16 + 25 = 41 = PR
Thus, the square of the third is equal to the sum of the squares of the other two sides.
Thus, they are the vertices of the right angled triangle.