Hushar Mulga
@Rohit
Spread the love

Verify that points P(-2, 2), Q(2, 2) and R(2, 7) are vertices of a right angled triangle.

Answer:-

\[PQ = \sqrt{\left( - 2 - 2 \right)^2 + \left( 2 - 2 \right)^2}\]

\[ = \sqrt{\left( - 4 \right)^2 + 0}\]

\[ = \sqrt{\left( - 4 \right)^2 + 0}\]

\[ = \sqrt{16} = 4\]

\[QR = \sqrt{\left( 2 - 2 \right)^2 + \left( 2 - 7 \right)^2}\]

\[ = \sqrt{0 + \left( - 5 \right)^2}\]

\[ = \sqrt{25}\]

\[ = 5\]

\[PR = \sqrt{\left( - 2 - 2 \right)^2 + \left( 2 - 7 \right)^2}\]

\[ = \sqrt{\left( - 4 \right)^2 + \left( - 5 \right)^2}\]

\[ = \sqrt{16 + 25}\]

\[ = \sqrt{41}\]

\[{PQ}^2 + {QR}^2 = {PR}^2 \]

⇒42 + 52 = 16 + 25 = 41 = PR 

Thus, the square of the third is equal to the sum of the squares of the other two sides.
Thus, they are the vertices of the right angled triangle.

Chapter 5. Co-ordinate Geometry – Practice Set 5.1 (Page 107)