Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Chapter 6 – Trigonometry – Text Book Solution
Problem set 6| Q 5.10| Page 139
Prove that `(sinθ – cosθ + 1)/(sinθ + cosθ – 1) = 1/(secθ – tanθ)`
Solution
Consider the L.H.S.
(sinθ - cosθ + 1)/(sinθ + cosθ - 1)
= ((sinθ - cosθ + 1)/(sinθ + cosθ - 1)) * ((sinθ + cosθ + 1)/(sinθ + cosθ + 1))
= ((sinθ + 1 - cosθ)/(sinθ + cosθ - 1)) * ((sinθ + 1 + cosθ)/(sinθ + cosθ + 1))
= ((sinθ + 1)^2 - cos^2θ)/((sinθ + cosθ)^2 - 1^2)
= (sin^2θ + 1 + 2sinθ - cos^2θ)/(sin^2θ + cos^2θ + 2sinθcosθ - 1)
since sin^2θ + cos^2θ = 1
= (1 - cos^2θ + 1 + 2sinθ - cos^2θ)/(1 + 2sinθcosθ - 1)
= (2 - 2cos^2θ + 2sinθ)/(2sinθcosθ)
= (1 - cos^2θ + sinθ)/(sinθcosθ)
= (sin^2θ + sinθ)/(sinθcosθ)
= (sinθ + 1)/cosθ
= 1/cosθ + sinθ/cosθ
= secθ + tanθ
= (secθ + tanθ) * (secθ - tanθ)/(secθ - tanθ)
= (sec^2θ - tan^2θ)/(secθ - tanθ)
We know that sec^2θ – tan^2θ = 1
= 1/(secθ - tanθ)
Hence, it is proved.
Chapter 6 – Trigonometry – Text Book Solution
Problem Set 6 |Q 5.10| P 139
Click Here to see All the Textbook solution of Geometric Construction