Prove the following. [(tan^3(theta) - 1) / (tan(theta) - 1)] = sec^2(theta) + tan(theta)
Chapter 6 – Trigonometry – Text Book Solution
Problem set 6| Q 5.9| Page 138
Prove the following. [(tan^3(theta) – 1) / (tan(theta) – 1)] = sec^2(theta) + tan(theta)
\[\frac{\tan^3 \theta - 1}{\tan\theta - 1}\]
\[ = \frac{\left( \tan\theta - 1 \right)\left( \tan^2 \theta + \tan\theta \times 1 + 1 \right)}{\tan\theta - 1} \left[ a^3 - b^3 = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right]\]
\[ = \tan^2 \theta + \tan\theta + 1\]
\[ = \sec^2 \theta + \tan\theta \left( 1 + \tan^2 \theta = \sec^2 \theta \right)\]
Solution
To prove the given identity:
Let’s first simplify the left-hand side (LHS) of the equation:
LHS = (tan^3(theta) – 1) / (tan(theta) – 1) = [(tan(theta) – 1) (tan^2(theta) + tan(theta) + 1)] / (tan(theta) – 1) = tan^2(theta) + tan(theta) + 1
Now, let’s simplify the right-hand side (RHS) of the equation using the identity tan^2(theta) + 1 = sec^2(theta):
RHS = sec^2(theta) + tan(theta) = 1/cos^2(theta) + sin(theta)/cos(theta) = (1 + sin^2(theta)) / cos^2(theta) = (tan^2(theta) + 1) / cos^2(theta) = tan^2(theta) / cos^2(theta) + 1 / cos^2(theta) = sec^2(theta) + 1
We can see that LHS = RHS, and the identity is proven.
Chapter 6 – Trigonometry – Text Book Solution
Problem Set 6 |Q 5.9| P 138
Click Here to see All the Textbook solution of Geometric Construction