Hushar Mulga
@Rohit
Spread the love

Prove the following. sec^6 x - tan^6 x = 1 + 3 sec^2 x * tan^2 x.

Chapter 6 – Trigonometry – Text Book Solution

Problem set 6| Q 5.7| Page 138

Prove the following. sec^6 x – tan^6 x = 1 + 3 sec^2 x * tan^2 x.

We have,
\[\sec^2 x - \tan^2 x = 1\]
Cubing on both sides, we get
\[\left( \sec^2 x - \tan^2 x \right)^3 = 1^3 \]
\[ \Rightarrow \left( \sec^2 x \right)^3 - \left( \tan^2 x \right)^3 - 3 \times \sec^2 x \times \tan^2 x \times \left( \sec^2 x - \tan^2 x \right) = 1 \left[ \left( a - b \right)^3 = a^3 - b^3 - 3ab\left( a - b \right) \right]\]
\[ \Rightarrow \sec^6 x - \tan^6 x - 3 \sec^2 x \tan^2 x = 1\]
\[ \Rightarrow \sec^6 x - \tan^6 x = 1 + 3 \sec^2 x \tan^2 x\]

Solution

We have, sec^2 x – tan^2 x = 1 Cubing on both sides, we get (sec^2 x – tan^2 x)^3 = 1^3 => (sec^2 x)^3 – (tan^2 x)^3 – 3 * sec^2 x * tan^2 x * (sec^2 x – tan^2 x) = 1 [ (a – b)^3 = a^3 – b^3 – 3ab(a – b) ] => sec^6 x – tan^6 x – 3 sec^2 x tan^2 x = 1 => sec^6 x – tan^6 x = 1 + 3 sec^2 x tan^2 x

Chapter 6 – Trigonometry – Text Book Solution

Problem Set 6 |Q 5.7| P 138

Click Here to see All the Textbook solution of Geometric Construction