India's No. 1 – E-learning platform
Chapter 6 – Trigonometry – Text Book Solution
Practice Set 6.1| Q 6.12 | Page 132
Prove That
tanθ/(secθ – 1) = (tanθ + secθ + 1)/(tanθ + secθ – 1)
Solution
We can start by simplifying the left-hand side of the equation:
tanθ/(secθ – 1)
= tanθ/(1/cosθ – 1) (using the identity secθ = 1/cosθ)
= tanθ/((1 – cosθ)/cosθ)
= (sinθ/cosθ) / ((1 – cosθ)/cosθ)
= sinθ/(cosθ – cos²θ)
= sinθ/(sin²θ/cosθ)
= cosθ/sinθ
= cotθ
Next, we can simplify the right-hand side of the equation:
(tanθ + secθ + 1)/(tanθ + secθ – 1)
= ((sinθ/cosθ) + (1/cosθ) + 1)/((sinθ/cosθ) + (1/cosθ) – 1)
= ((sinθ + 1 + cosθ)/cosθ)/((sinθ + 1)/cosθ)
= (sinθ + cosθ + 1)/(sinθ + 1)
Now, we can see if the two sides are equal by cross-multiplying:
cotθ = (sinθ + cosθ + 1)/(sinθ + 1)
(sinθ + cosθ)/sinθ = (sinθ + cosθ + 1)/sinθ
sinθ + cosθ = sinθ + cosθ + 1
1 = 1
Therefore, we have shown that the two sides are equal and proved that:
Practice set 6.1 |Q 6.12| P 132
Click Here to see All the Textbook solution of Geometric Construction