Hushar Mulga
@Rohit
Spread the love

Practice Set 2.2 | Q 3 | Page 43

In the given figure, seg PS is the median of ∆PQR and PT ⊥ QR. Prove that,

(i) PR2 = PS2 + QR × ST + `(“QR”/2)^2`

(ii) PQ2 = PS2 – QR × ST + `(“QR”/2)^2`

In the figure 2.28 seg PS is the median of D PQR
Answer: (i) $$PR^2 = PS^2 + QR \times ST + \left(\frac{QR}{2}\right)^2$$ (ii) $$PQ^2 = PS^2 - QR \times ST + \left(\frac{QR}{2}\right)^2$$ $$QS = SR = \frac{QR}{2}$$ ...(1) (S is the midpoint of side QR) In $$\triangle PTS$$, $$\angle T = 90°$$ According to Pythagoras theorem, $$PS^2 = PT^2 + ST^2$$ ...(2) (i) In $$\triangle PTR$$, $$\angle T = 90°$$ According to Pythagoras theorem, $$PR^2 = PT^2 + RT^2$$ $$\therefore PR^2 = PT^2 + (ST + SR)^2$$ $$\therefore PR^2 = PT^2 + (ST + \frac{QR}{2})^2$$ $$\therefore PR^2 = PT^2 + ST^2 + 2ST \times \left(\frac{QR}{2}\right) + \left(\frac{QR}{2}\right)^2$$ $$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$ [(a + b)^2 = a^2 + 2ab + b^2] $$\therefore PR^2 = (PT^2 + ST^2) + ST \times QR + \left(\frac{QR}{2}\right)^2$$ $$\therefore PR^2 = PS^2 + ST \times QR + \left(\frac{QR}{2}\right)^2$$ $$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$ [From 2] (ii) In $$\triangle PTQ$$, $$\angle T = 90°$$ According to Pythagoras theorem, $$PQ^2 = PT^2 + TQ^2$$ $$\therefore PQ^2 = PT^2 + (QS - ST)^2$$ $$\therefore PQ^2 = PT^2 + \left(\frac{QR}{2} - ST\right)^2$$ $$\therefore PQ^2 = PT^2 + \left(\frac{QR}{2}\right)^2 - 2 \times \frac{QR}{2} \times ST + ST^2$$ $$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$ [(a - b)^2 = a^2 - 2ab + b^2] $$\therefore PQ^2 = (PT^2 + ST^2) - QR \times ST + \left(\frac{QR}{2}\right)^2$$ $$\therefore PQ^2 = PS^2 - QR \times ST + \left(\frac{QR}{2}\right)^2$$ $$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$ [From 2]

Answer:- (i) PR2 = PS2 + QR × ST + (QR/2)^2

(ii) PQ2 = PS2 – QR × ST + (QR/2)^2

QS = SR = QR/2                 …(1)(S is the midpoint of side QR)

In ΔPTS, 
∠T = 90°                           
According to Pythagoras theorem,  
PS2 = PT2 + ST2                 …(2)

(i) In ΔPTR, ∠T = 90°  

According to Pythagoras theorem,  

 PR2 =  PT2 + RT2

∴ PR2 = PT2 + (ST + SR)2

∴ PR2 = PT2 + (ST + SR)2

∴ PR2 = PT2 + (ST + QR/2)^2 

∴ PR2 = PT2 + ST2 + 2ST × (QR/2) + (QR/2)^2    …[(a + b)^2 = a^2 + 2ab + b^2]

∴ PR2 = (PT2 + ST2) + ST × QR + (QR/2)^2 

∴ PR2 = PS2 + ST × QR + (QR/2)^2          …[From 2]

(ii) In ΔPTQ, ∠T = 90°  

According to Pythagoras theorem, 

PQ2 = PT2 + TQ2 

∴ PQ= PT2 + (QS – ST)2

∴ PQ= PT2 + (QR/2 – ST)^2     

∴ PQ= PT2 + (QR/2)^2 – 2 × QR/2 × ST + ST^2 ..[(a – b)^2 = a^2 – 2ab + b^2]

∴ PQ2  (PT2 + ST2) – QR × ST + (QR/2)^2 

∴ PQ= PS^2 – QR × ST + (QR/2)^2     …[From 2]

Chapter 2 – Pythagoras Theorem- Text Book Solution

Practice Set 2.2 | Q  3 | Page 43