Hushar Mulga
@Rohit
Spread the love

In the given figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

Practice Set 1.2 | Q 10 | Page 15
In the given figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

Proof :  In Δ XDE, PQ || DE         …….. ___________

`therefore “XP”/([    ]) = ([    ])/”QE”`  ….. (I) (Basic proportionality theorem)

In Δ XEE, QR || EF                    ……..  _________

`therefore ([     ])/([     ]) = ([      ])/([      ])`    …….(II) _________________

`therefore ([     ])/([     ]) = ([      ])/([      ])`   ……. from (I) and  (II)

∴ seg PR || seg DE           ……….. (converse of basic proportionality theorem)

In the figure 1.44, X is any point in the interior of triangle. Point X is joined to vertices of triangle
Solution

Given:
Seg PQ || seg DE
seg QR || seg EF
In △DXE, PQ || DE 

\[\frac{\text{XP}}{\text{PD}} = \frac{\text{XQ}}{\text{QE}} . . . \left( I \right) \left( \text{ By basic proportionality theorem } \right)\]
\[\] 

In △XEF, QR || EF                ....Given 

\[\therefore \frac{\text{XQ}}{\text{QE}} = \frac{\text{XR}}{\text{RF}} . . . . . \left( II \right) \left( \text{ By basic proportionality theorem }  \right)\]
\[\] 

\[\therefore \frac{\text{XP}}{\text{PD}} = \frac{\text{XR}}{\text{RF}} \text{ From } \left( I \right)\text{ and } \left( II \right)\]

∴ seg PR || seg DF             (Converse of basic proportional theorem)

Answer:_-

Given:

  • Seg PQ || seg DE
  • Seg QR || seg EF

To prove: seg PR || seg DF

Proof: In △DXE, PQ || DE    ….(1) [Given]

Applying basic proportionality theorem in △DXE, we get: XP/PD = XQ/QE    ….(2)

In △XEF, QR || EF    ….(3) [Given]

Applying basic proportionality theorem in △XEF, we get: XQ/QE = XR/RF    ….(4)

From equations (2) and (4), we get: XP/PD = XR/RF    ….(5)

Applying converse of basic proportionality theorem in △PRF and using equation (5), we get: seg PR || seg DF    ….(6)

Hence, we have proved that seg PR || seg DF.

Chapter 1. Similarity- Practice Set 1.2  – Page 15

Click Here for All Textbook Soutions of Chapter 1: Similarity